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 We argue in this paper that when the knowledge base of
 an industry is both complex and expanding and the
 sources of expertise are widely dispersed, the locus of
 innovation will be found in networks of learning, rather
 than in individual firms. The large-scale reliance on
 interorganizational collaborations in the biotechnology
 industry reflects a fundamental and pervasive concern
 with access to knowledge. We develop a network
 approach to organizational learning and derive firm-level,
 longitudinal hypotheses that link research and
 development alliances, experience with managing
 interfirm relationships, network position, rates of growth,
 and portfolios of collaborative activities. We test these
 hypotheses on a sample of dedicated biotechnology
 firms in the years 1990-1994. Results from pooled,
 within-firm, time series analyses support a learning view
 and have broad implications for future theoretical and
 empirical research on organizational networks and
 strategic alliances.*

 In recent decades, there has been unprecedented growth in
 corporate partnering and reliance on various forms of
 external collaboration (Hergert and Morris, 1988; Mowery,
 1988; Hagedoorn, 1990, 1995; Badaracco, 1991; Hagedoorn
 and Schakenraad, 1992; Gulati, 1995). Historically, firms
 organized research and development (R&D) internally and
 relied on outside contract research only for relatively simple
 functions or products (Mowery, 1983; Nelson, 1990a).
 Today, companies in a wide range of industries are
 executing nearly every step in the production process, from
 discovery to distribution, through some form of external
 collaboration. These various types of interfirm alliances take
 on many forms, ranging from R&D partnerships to equity
 joint ventures to collaborative manufacturing to complex
 co-marketing arrangements. The most common rationales
 offered for this upsurge in collaboration involve some
 combination of risk sharing, obtaining access to new markets
 and technologies, speeding products to market, and pooling
 complementary skills (Kogut, 1989; Kleinknecht and Reijnen,
 1992; Hagedoorn, 1993; Mowery and Teece, 1993;
 Eisenhardt and Schoonhoven, 1996).

 We do not doubt that the need to combine complementary
 assets has played a role in the growth of interfirm alliances.
 Nonetheless, we want to explore a different argument, one
 that we think has more explanatory power in industries in
 which knowledge is developing rapidly. A key finding from a
 diverse set of studies is that the R&D intensity or level of
 technological sophistication of industries is positively
 correlated with the intensity and number of alliances in those
 sectors (C. Freeman, 1991; Hagedoorn, 1995). Viewed
 broadly, technological change occurs in two forms. When
 advances build on existing know-how, established firms reap
 the bulk of the benefits. But when new discoveries create
 technological discontinuities, or radical breaks from
 previously dominant methods, incumbents can be robbed of
 many of their advantages. Moreover, new kinds of
 organizational practices may emerge to exploit these novel
 developments (Schumpeter, 1934; Abernathy and Clark,
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 Networks of Learning

 1985; Tushman and Anderson, 1986; Tushman and
 Rosenkopf, 1992). Such radical new developments have the
 potential to restructure a mature industry, hence
 Schumpeter's phrase: "gales of creative destruction." The
 most apt recent exemplars are the effects of first the
 transistor and later the integrated circuit on the electronics
 industry (J. Freeman, 1990) and the effects of biotechnology
 on the mature pharmaceutical industry. Biotechnology
 represents a competence-destroying innovation because it
 builds on a scientific basis (immunology and molecular
 biology) that differs significantly from the knowledge base
 (organic chemistry) of the more established pharmaceutical
 industry. Consequently, biotech provides enhanced research
 productivity, with less risk and with more speed and
 potentially higher rewards (Weisbach and Moos, 1995).

 The purpose of this paper is to examine the organizational
 arrangements that have arisen in response to the
 technological ferment generated by biotechnology. We focus
 on forms of collaboration undertaken by dedicated
 biotechnology firms and assess the contribution of
 cooperative ventures to organizational learning. In short, we
 seek to map the network structure of this emerging industry
 and explain the purposes served by the extensive
 connections that typify the field.

 COLLABORATION AND ORGANIZATIONAL LEARNING

 When there is a regime of rapid technological development,
 research breakthroughs are so broadly distributed that no
 single firm has all the internal capabilities necessary for
 success. Many groups of competitors are likely to be
 working on the same targets; the rewards go to the
 swiftest. Thus, new technologies are both a stimulus to and
 the focus of a variety of cooperative efforts that seek to
 reduce the inherent uncertainties associated with novel
 products or markets. Running throughout the literature on
 partnering is an argument that collaboration enhances
 organizational learning (Hamel, 1991; Dodgson, 1993). We
 discern, however, two rather different strands of thinking
 about collaboration and learning.

 One approach is largely strategic (Teece, 1986; Williamson,
 1991). The choice to pool resources with another
 organization depends on calculations involving risk versus
 return. Obviously, reliance on external partners involves
 hazards (Powell, 1990; Sabel, 1993). A lack of trust between
 the parties, difficulties in relinquishing control, the complexity
 of a joint project, and differential ability to learn new skills
 are all barriers to effective collaboration. Moreover, in those
 industries in which interfirm agreements are relatively
 frequent, there can be competitive confusion about who is
 an ally and who is not. The partnering decision thus depends
 on each partner's size and position in the "value-chain," the
 level of technological sophistication, resource constraints,
 and prior experiences with alliances. The form of
 collaboration is purported to vary according to the specific
 types of skills and resources to be exchanged (Hennart,
 1988; Pisano, 1989; Parkhe, 1993). Posed this way, the
 decision to collaborate is a variant of the make-or-buy
 decision, framed largely in terms of transaction cost
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 economics. Firms thus turn to collaboration to acquire
 resources and skills they cannot produce internally, when the
 hazards of cooperation can be held to a tolerable level.

 According to an alternative argument, learning is a social
 construction process (Brown and Duguid, 1991). In this view,
 what is learned is profoundly linked to the conditions under
 which it is learned. Knowledge creation occurs in the context
 of a community, one that is fluid and evolving rather than
 tightly bound or static. The canonical formal organization,
 with its bureaucratic rigidities, is a poor vehicle for learning.
 Sources of innovation do not reside exclusively inside firms;
 instead, they are commonly found in the interstices between
 firms, universities, research laboratories, suppliers, and
 customers (Powell, 1990). Consequently, the degree to
 which firms learn about new opportunities is a function of
 the extent of their participation in such activities (Levinthal
 and March, 1994). Brown and Duguid (1991: 48) summarized
 this view nicely by stating that learning is about becoming a
 practitioner, not learning about a practice. Von Hippel (1988)
 has shown that the trading of know-how often requires the
 establishment of long-term relationships in which exchange
 occurs within a learned and shared code.

 March (1991) captured these divergent views of learning in
 his discussion of the differences between exploration and
 exploitation in organizational learning. He argued that the
 "essence of exploitation is the refinement and extension of
 existing competencies, technologies and paradigms ... [the]
 essence of exploration is experimentation with new
 alternatives" (March, 1991: 85). Exploitation generates
 predictable returns, while the returns from exploration are
 much more uncertain. Exploration is costly, often unfruitful,
 but "the only way to finish first" (Levinthal and March, 1994:
 106).

 Yet the messy world of practice often blurs the neat
 distinctions of theory. Exploitation and exploration, and
 calculation and community are intertwined. Organizational
 learning is both a function of access to knowledge and the
 capabilities for utilizing and building on such knowledge. We
 follow Nelson (1990b) and Stinchcombe (1990) in arguing
 that organizational arrangements that provide access to
 knowledge quickly and reliably produce competitive
 advantage. But rather than seeing such activity as calculative
 or strategic, we draw on a long line of research that stresses
 the centrality of building skills and exercising routines in
 organizations (Cyert and March, 1963; Nelson and Winter,
 1982; Stinchcombe, 1990).

 The complex reality of rapidly developing fields, in which
 knowledge is both sophisticated and widely dispersed,
 transcends the simple calculation of a make-or-buy decision.
 Research breakthroughs demand a range of intellectual and
 scientific skills that far exceed the capabilities of any single
 organization, as illustrated by two notable recent discoveries
 in biotechnology. The development of an animal model for
 Alzheimer's disease appeared in a report (Nature, Feb. 9,
 1995) coauthored by 34 scientists affiliated with two new
 biotech companies, one established pharmaceutical firm, a
 leading research university, a federal research laboratory, and
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 Networks of Learning

 a nonprofit research institute. Similarly, a publication
 identifying a strong candidate for the gene determining
 susceptibility to breast and ovarian cancer (Science, Oct. 7,
 1994) featured 45 coauthors drawn from a biotech firm, a
 U.S. medical school, a Canadian medical school, an
 established pharmaceutical company, and a government
 research laboratory. More important than the number of
 authors are the diversity of sources of innovation and the
 wide range of different organizations involved in these
 breakthrough publications.

 Learning through Networks

 We argue that when knowledge is broadly distributed and
 brings a competitive advantage, the locus of innovation is
 found in a network of interorganizational relationships
 (Powell and Brantley, 1992). To stay current in a rapidly
 moving field requires that an organization have a hand in the
 research process. Passive recipients of new knowledge are
 less likely to appreciate its value or to be able to respond
 rapidly. In industries in which know-how is critical,
 companies must be expert at both in-house research and
 cooperative research with such external partners as
 university scientists, research hospitals, and skilled
 competitors. In examining whether research collaborations
 increase the subsequent likelihood of other types of
 cooperation, we build a network analog to Cohen and
 Levinthal's (1989, 1990) concept of "absorptive capacity." A
 firm with a greater capacity to learn is adept at both internal
 and external R&D, thus enabling it to contribute more to a
 collaboration as well as learn more extensively from such
 participation. Internal capability and external collaboration are
 not substitutes for one another, but complementary
 (Mowery and Rosenberg, 1989; Arora and Gambardella,
 1994). Internal..capability is indispensable in evaluating
 research done outside, while external collaboration provides
 access to news and resources that cannot be generated
 internally (Nelson, 1990b). A network serves as a locus of
 innovation because it provides timely access to knowledge
 and resources that are otherwise unavailable, while also
 testing internal expertise and learning capabilities.

 Our concept of networks of learning highlights two key
 observations: (1) Interorganizational collaborations are not
 simply a means to compensate for the lack of internal skills,
 (2) nor should they be viewed as a series of discrete
 transactions. A firm's value and ability as a collaborator is
 related to its internal assets, but at the same time,
 collaboration further develops and strengthens those internal
 competencies. Firms deepen their ability to collaborate not
 just by-managing relations dyadically, but by instantiating and
 refining routines for synergistic partnering. To illustrate,
 Richard DiMarchi, Vice President for Endocrine Research at
 Eli Lilly and Company, emphasizes that the biggest mistake
 his company could make in managing research alliances is to
 treat them as "one-offs"-independent relationships
 pursued separately (personal communication with the first
 author). The development of cooperative routines goes
 beyond simply learning how to maintain a large number of
 ties. Firms must learn how to transfer knowledge across
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 Comments by Edward Penhoet, CEO of
 Chiron, on Koput, Powell, and Smith-
 Doerr (1 995).

 alliances and locate themselves in those network positions
 that enable them to keep pace with the most promising
 scientific or technological developments.

 In our view, collaborations in high-tech industries typically
 reflect more than just a formal contractual exchange. When
 the first author presented the chief executive officer (CEO)
 of Centocor with a list of his firm's formal agreements, he
 observed that it was "the tip of the iceberg-it excludes
 dozens of handshake deals and informal collaborations, as
 well as probably hundreds of collaborations by our
 company's scientists with colleagues elsewhere." Beneath
 most formal ties, then, lies a sea of informal relations. Many
 alliances-no matter what their ostensible function-reflect
 a relationship that carries benefits beyond the particular
 exchange designated in a formal agreement. Nonetheless,
 R&D alliances, which are unambiguously explorative, play a
 critical role in allowing firms to stay abreast of rapidly
 changing developments. Knowledge facilitates the use of
 other knowledge. What can be learned is crucially affected
 by what is already known. A vice president for corporate
 research at Xerox put this point nicely: "In order for
 industrial research organizations to be in close contact with
 new advances in basic science, it is important . .. to be an
 active participant at the leading edge of world science.
 Effective technical interchange requires that the industrial
 organization have its own basic research results . . . to use
 as a currency of exchange" (Pake, 1986:36, emphasis in
 original).

 Accumulated findings at the frontiers of research provide
 leverage to access, assimilate, and exploit additional ideas
 and information. R&D collaboration is both an admission
 ticket to an information network and a vehicle for the rapid
 communication of news about opportunities and obstacles.
 The CEO of Chiron remarked that his biotech firm has more
 than 100 short-term, small-scale (less than two years and
 $200,000) relationships with university scientists.1 When
 such projects lead to the possibility of a new medicine,
 relationships become formal and contractual. Innovative
 activities, then, cannot be reduced to a simple process of
 information acquisition. Because extensive contacts typically
 cross-knit research communities, involvement in collaborative
 R&D expands the horizons of a firm's personnel and
 increases their awareness of additional projects that might
 be undertaken. Thus, R&D alliances serve as a platform for
 diverse network activity.

 Knowledge also requires other knowledge. When the
 sources of expertise are disparate, collaborative R&D opens
 an organization's eyes to the need for accessing ideas and
 information from a variety of sources, to exploit the research
 findings in a commercial context. Both skill and experience
 are needed to accumulate the capability to benefit from the
 interdependencies across diverse collaborative behaviors. In
 addition, experience at collaborating is necessary to manage
 a diverse portfolio of ties. Hence, we argue that firms learn
 from exploration and experience how to recognize and
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 structure synergies across different types of alliances. Thus
 we posit:

 Hypothesis 1: The greater the (a) number of research and
 development alliances and (b) experience at managing R&D and
 other types of collaborations a firm has at a given time, the greater
 the number of non-R&D collaborations it subsequently pursues;
 and, in turn, the more diverse its future portfolio of ties will
 become, controlling for prior levels.

 An organization simultaneously learns which collaborations to
 pursue and how to function within a context of multiple
 cooperative ventures. The dynamics of cooperation are
 endogenous in high-tech fields in which scientific advances
 fuel new discoveries that in turn require novel forms of
 collaboration to develop. When collaboration stems from
 membership in a common technological community, as we
 are arguing, partnering is routinized and occurs more readily,
 with less effort. Collaboration becomes emergent-
 stemming from ongoing relationships-informal, and
 nonpremeditated (Von Hippel, 1988; Hakansson, 1990).

 Thus, once a firm begins collaborating, it develops
 experience at cooperation and a reputation as a partner.
 Over time, firms develop capabilities for interacting with
 other firms. Experience with collaborative networks proves a
 fertile ground for both further formal partnerships and an
 expanding array of informal relationships. A broader range of
 collaborative efforts provides greater opportunity to refine
 organizational routines for cooperating and render them more
 versatile.

 The information that passes through networks is influenced
 by each participant's position in the industry structure. Firms
 with access to a more diverse set of activities and those
 with more experience at collaborating are better able to
 locate themselves in information-rich positions. We contend
 that firms with more experience have more ties and that the
 ties they have provide more central connectedness.
 Moreover, experience with diverse research-driven networks
 and the connections that experience brings determine how
 well situated a firm becomes. Consequently, we predict:

 Hypothesis 2: The greater (a) the number of R&D alliances, (b) the
 diversity of ties, and (c) the experience at managing R&D
 collaborations or other ties that a firm has at a given time, the more
 centrally connected the firm subsequently becomes, controlling for
 the total number of ties and prior connectedness.

 Differential location in a network of partnerships results in
 firms having divergent capabilities for benefiting from
 collaboration. More formally, we argue that central
 connectedness shapes a firm's reputation and generates
 visibility, producing access to resources via benefit-rich
 networks. Such a reputation can greatly enhance a firm's
 ability to attract talented new employees. Network location
 thus shapes the nature of competition. Firms more centrally
 located should have more timely access to promising new
 ventures, while those with more collaborative experience
 should be better positioned to exploit them. Experience at
 managing ties allows a firm to move quickly in identifying
 new projects and funneling them inside the organization,
 enabling growth to occur in a fashion conversely analogous
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 to absorptive capacity. Put colloquially, a firm grows by being
 a player; it does not become a player by growing. Therefore,
 we contend:

 Hypothesis 3: The greater a firm's (a) centrality in a network of
 relationships and (b) experience at managing ties at a given time,
 the more rapid its subsequent growth, controlling for prior growth.

 Finally, we expect that these returns from experience with
 diverse collaborative activity should elicit positive feedback.
 The information that passes through networks is influenced
 by each participant's position in the overall network
 structure. Differential location in a network of partnerships
 results in firms having divergent capabilities for benefiting
 from collaboration. Firms that are located in extensive
 networks of collaboration are enmeshed in complex and
 shifting patterns of rivalry and cooperation. Moreover, a
 firm's experience with networks and its position within them
 alter the nature of competition. No longer can the goal be to
 vanquish your opponent, lest you eliminate your collaborator
 on another project. Centrality in a network facilitates
 common understandings and shared principles of
 cooperation, thus enhancing further exchange. Hence, we
 posit:

 Hypothesis 4: The greater a firm's centrality in a network of
 relationships at a given time, the greater its number of subsequent
 R&D collaborations, controlling for prior collaborative R&D activity.

 The Biotechnology Industry

 We explore the hypotheses just derived in the context of the
 field of biotechnology, a young science-based industry. The
 pioneering work of Watson and Crick in the early 1950s,
 which described the structure of DNA as a double helix, laid
 the foundation for the development of the science of
 molecular biology. The core technologies used in
 biotechnology-DNA synthesizing and sequencing, cell
 fusion methodologies for producing hybridomas-are
 approximately twenty years old. Yet despite its youth,
 biotechnology is a burgeoning field. Commentators suggest
 that molecular/cellular biology has displaced physics as the
 most prominent of the sciences, pushing "biology beyond
 the descriptive stage into the development of powerful
 models and experimental techniques that are helping us to
 understand the most fundamental of life processes" (Keller,
 1990: 124).

 Similar to the development of physics in the first half of this
 century, basic research in the biosciences has been spurred
 by its exceptional technological potential. To a student of
 organizations, it is the speed and scope of commercial
 development in biotechnology that is remarkable. While
 biotech had its origins in the laboratories of universities and
 research institutes, it.was commercially exploited by small,
 science-based companies, the first of which went public in
 1980. In the decade and a half since, hundreds of companies
 were created in the U.S., and many more abroad. Investors
 of all kinds poured billions into biotech, by some accounts,
 more than $60 billion by 1993. These entrepreneurial
 companies face stiff obstacles; many companies stumble on
 the long and winding road from drug development through
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 Agricultural and veterinary biotechnology
 has encountered considerable public
 opposition in the U.S. to genetically
 altered food and animals. As a
 biotechnology attorney put it to the first
 author, "the decision to take a new
 cancer drug is a choice a patient makes
 with his or her doctor, but a new breed
 of strawberry is not a private decision but
 rather one with broad externalities."

 Networks of Learning

 regulatory approval to the medical marketplace. The process
 of creating new biotech drugs is research-intensive, very
 protracted, and extraordinarily expensive ($100-300 million
 per product). Nevertheless, by the close of 1994, twenty-five
 biotechnology-based drugs were approved by the U.S. Food
 and Drug Administration (FDA). At present, more than 220
 medicines are in various stages of clinical testing, and some
 two dozen drugs await FDA approval. Drug development
 timelines average 7 to 11 years from discovery to launch for
 pharmaceuticals, while biotech firms have brought new
 medicines to market in a time frame of 4 to 8 years (Powell,
 1996a). Biotech industry sales reached $7 billion in 1993, an
 impressive sum for a young field, but still two billion less
 than the sales of pharmaceutical giant Merck (Gupta, 1994:
 C4).

 In many respects, biotechnology is not an industry per se,
 but a set of technologies with the potential to transform
 various fields-pharmaceuticals, chemicals, agriculture,
 veterinary science, medicine, even waste disposal. Many
 researchers (e.g., Barley and Freeman, 1992; Amburgey,
 Shan, and Singh, 1994) treat the wide array of biotechnology
 companies as comparable. In contrast, we intentionally
 restrict our attention to only those for-profit firms engaged
 principally in human therapeutics and diagnostics, hereafter
 referred to as dedicated biotech firms, or DBFs. We are
 persuaded that the therapeutics sector is driven by a
 different research agenda and operates within a distinctive
 regulatory regime.2 We intentionally omit firms engaged only
 in agricultural, veterinary, or bioremediation activity and
 exclude peripheral companies that produce only equipment,
 materials, or test kits for the industry.

 As the human biotechnology industry developed in the
 1980s, it became clear that the full range of required skills
 (e.g., basic research, applied research, clinical testing
 procedures, manufacturing, marketing and distribution, and
 knowledge of and experience with the regulatory process)
 could not be easily assembled under one roof. The basic
 science and applied research skills needed to create new
 products were based in universities, research institutes, and
 DBFs (Smith-Doerr, 1994; Zucker, Darby, and Brewer, 1994;
 Powell, 1996b). In a field in which scientific excellence is
 paramount, biotech companies must establish their bona
 fides with research scientists. They do so by investing
 heavily in R&D, organizing in a fashion that is, comparatively,
 similar to a university laboratory, allowing their scientists
 considerable autonomy to work on their own projects and to
 publish and participate in the scientific community, and by
 creating postdoctoral research programs. These practices
 help promote a common technological community between
 universities and DBFs. Professors take sabbaticals at biotech
 companies; postdoctoral fellows move back and forth
 between universities and firms; and top universities
 compete for industry scientists. The 1993 Nobel Prize in
 Chemistry was given to Kary Mullis for work done at a
 biotech firm.

 Venture capitalists fueled most of the initial discoveries and
 guided many firms through their early years. But moving
 from basic research to product development required not
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 Several readers have questioned whether
 learning occurs in the context of a
 licensing agreement, an arrangement that
 could be handled by the lawyers for the
 two parties. But we think licensing is
 almost always a part of a broader
 collaborative strategy. For instance, in
 1990, out of 210 licensing ties in our
 sample, just three firms pursued only
 licensing agreements. The preponderance
 of licensing deals were made by firms
 With multiple forms of network activity.
 Moreover, licensing rarely occurs without
 prior contact between the two parties to
 explore the viability of the project. Other
 readers have wondered whether finance
 ties involve the transfer of knowledge. In
 biotech, the answer is clearly "yes."
 Because of their youth and academic
 origins, companies have been very short
 on experienced managers; consequently,
 venture capital and other sources of
 finance have played a vital role in
 providing management advice and
 leadership.

 only- lots of money, it also demanded expertise in conducting
 extensive clinical trials and securing federal regulatory
 approval. Neither universities nor DBFs have been well
 equipped for these tasks, but large pharmaceutical firms
 most certainly have. Large pharmaceuticals were flush with
 cash and controlled marketing channels worldwide. But
 established pharmaceutical firms have been unable to create
 internally the kind of research environment that fosters
 constant innovation and discovery. So the various
 participants in biotech have turned to joint ventures, research
 agreements, minority equity investments, licensing, and
 various kinds of partnerships to make up for their lack of
 internal capabilities and resources (Pisano, 1989, 1991; Arora
 and Gambardella, 1990, 1994; Powell and Brantley, 1992).
 Because product development can easily last a decade, firms
 compete for the intellectual and financial resources that are
 needed to sustain the discovery and development process.

 Perhaps the most profound difference between biotech
 firms and large pharmaceutical companies is the
 management and organization of the research process, with
 the former much closer to basic sciences than the latter.
 Biotechnology, however, has proven to be an unusual case
 of competence destruction. Scientific discoveries have
 profoundly reshaped the nature of the drug discovery
 process, but once a new medicine is developed, the key
 uncertainties concern the development of the technology
 into a safe and effective medical product that can be
 targeted widely, a competency at which established
 pharmaceutical firms are very good. Hence, the technological
 breakthroughs that level the playing field on the exploration
 front also create new opportunities for established firms in
 exploitation. Consequently, circumstances of mutual need
 develop. Small firms require large firms' financial support and
 regulatory savvy, while larger corporations desire access to
 the research prowess of smaller companies.

 METHOD

 Data

 We sought to explain the pattern of interorganizational
 agreements that structure learning in the field of
 biotechnology. These agreements are formal ties, frequently
 involving very expensive investments by both parties. We
 built a relational database that contains separate files for (1)
 DBFs in human therapeutics and diagnostics, (2) the formal
 contractual, interorganizational agreements involving DBFs,
 and (3) the partners to these agreements. The information
 gathered for each DBF includes founding date, employment
 levels, sources of financing, and collaborative agreements,
 which we treated as ties. We coded each tie for its purpose
 and duration, using an implicit logic of production to classify
 them into categories, as described in Table 1: R&D, clinical
 trials, manufacturing, marketing and licensing, and so forth.3
 The "partner" datafile for all organizations that appear as
 partners on any tie with a DBF is large, expanding annually
 (numbering more than 1000 organizations active in 1994),
 and exceptionally diverse in both form and nationality,
 including multinational corporations, government agencies,
 hospitals, universities, and biopharmaceutical companies.
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 Networks of Learning

 Table 1

 Description of Biotechnology Agreements

 Type of tie Typical partners

 R&D: DBF develops research Other DBFs, pharmaceutical corps.,
 program with another research institutes, university labs
 organization for a specific target

 Outside investor: Partner invests Venture capital firms
 funds in DBF

 Clinical trials/evaluation: DBF has Research hospitals, firms
 partner conduct trials of product specializing in clinical trials
 on subjects for FDA approval

 Manufacturing: DBF contracts with Pharmaceutical corporations,
 partner to manufacture its chemical companies
 product

 Marketing/Licensing: DBF licenses Pharmaceutical corporations
 idea to marketer

 DBF purchases rights to partner's Universities
 idea

 Supply/Distribution: Agreement to Large chemical or pharmaceutical
 receive materials or to supply corporations
 products to distributors

 Investment/Joint Venture: DBF Other biotechnology firms
 invests funds (and usually
 human/scientific capital) in a
 partner

 Complex: DBF tie that contains Any partner (except venture capital
 more than one of the above- firms)
 listed activities (i.e., R&D and
 marketing)

 We began assembling the database in 1990, using Bioscan,
 an independent industry directory published six times a year
 that lists a great range of organizations (domestic and
 foreign, commercial, nonprofit, or government-owned,
 biotech, and diversified health care corporations). Bioscan
 lists information on a firm's ownership, its current products,
 and its research in progress. Thus it is reasonably easy to
 code firms according to our criteria. When we needed help
 in understanding the science, we consulted colleagues at our
 university's cancer center. We collected data for the five-
 year period 1990-1994. When information was missing from
 Bioscan, we consulted numerous other industry directories,
 such as various editions of Genetic Engineering and
 Biotechnology Related Firms Worldwide, Dun & Bradstreet's
 Who Owns Whom?, and listings in Moody's and Standard &
 Poor's. In addition, we consulted annual reports, Securities
 and Exchange Commission filings, and, when necessary,
 made phone calls to companies.

 Our focus on research-driven DBFs in human therapeutics
 resulted in a sample of approximately 225 independently
 owned companies. Various industry estimates suggest there
 are between 500 and 1,300 companies operating in the
 general area of biotechnology, but this number includes all
 segments of the industry, public and private companies, as
 well as subsidiaries, joint ventures, and branches of firms in
 other industries. The consulting firm Ernst & Young
 estimates approximately 1,300 companies are involved in
 some aspect of biotechnology but contends that less than
 20 percent of those are independent, publicly traded,
 dedicated biotech firms (Burrill and Lee, 1993). We did not
 exclude firms from the sample due to small size or non-U.S.
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 location. Our sample is largely U.S. based, but not
 exclusively so. Naturally, data availability is considerably
 better for publicly traded companies than privately held ones,
 and this is reflected in the Bioscan listings.

 In focusing on contractual agreements, we omitted the
 myriad informal arrangements out of which formal
 relationships emerge. Consequently, our analysis is a strict
 test of the learning argument because the database does not
 include widely used less formal relationships that promote
 the transfer of knowledge. Moreover, in the following
 analyses we do not focus on year-to-year changes in the
 content of particular agreements; thus the many instances in
 which relationships are deepened with the passage of time
 are not analyzed. In this sense, the analyses are a
 conservative test of our basic argument.

 Operationalizations and Measures

 Dependent variables. Hypotheses 1-4 predict the
 subsequent number and diversity of ties, network position in
 terms of central connectivity, and rates of growth for firms in
 our sample. We take these in turn.

 Number of R&D ties at time t + 1: The number of research
 and development ties a firm has captures the extent of its
 involvement in the core activities of the industry. The
 number of a firm's R&D alliances reflects its network profile
 for the purposes of exploration. As noted earlier, R&D has a
 unique status in theories of organizational learning, and so
 we treat it separately.

 Number of ties of each type (other than R&D) at time t + 1:
 We used the disaggregated number of ties for each stage
 of the product life-cycle (see Table 1) to capture the non-
 R&D network activity in which firms are involved. We view
 these efforts as a way to exploit R&D discoveries and thus
 as a complement to R&D networks.

 Network portfolio diversity at time t + 1: The range of ties
 that a firm is engaged in at any given time reflects a firm's
 portfolio of collaborative activities. Portfolio diversity is
 computed for each firm in each year as follows. For firm i in
 year t, denote the number of ties of type j as nitj and the
 total number of ties aggregated over all types (j = 1 . . .J;
 J = 8) as nit. The proportion of firm i's ties of type j, out of
 the total number of ties, is denoted Pitj and given by pitj =
 nitj Init. Each pit1j is squared and then the sum is taken over
 all j and subtracted from 1, resulting in the index of diversity,
 yit, so that:

 J

 yit= 1 -Eptj.
 j=1

 This is equivalent to Blau's index of heterogeneity (Blau,
 1977). Diversity can be treated as a continuous random
 variable, though bounded in the interval [0, 7/81.

 Central connectivity at time t + 1. Before describing the
 measures of network centrality that we used, a few remarks
 are in order. A tie is a link between organizations, i.e.,
 between a DBF and a partner. The partner may be another
 DBF or, more commonly, one of many organizations in the
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 Networks of Learning

 biopharmaceutical field. In counting ties above, we used only
 direct agreements between biotech firms and their partners.
 In computing centrality, however, we need to account for
 that fact that we do not have a closed network. In this
 respect, our measure of interfirm networks is somewhat
 unconventional. We wished to examine the structure of the
 network linking our sample of DBFs, but we had to define a
 closed set of firms to compute measures of connectivity.
 Yet many of the ties that structure the field involve parties
 outside the scope of our definition of a DBF-the overall
 universe of partners is open, diverse, and expanding. To
 capture the information flows that may take place between
 DBFs through non-DBF partners, we counted a connection
 between two DBFs when there was a direct tie (degree one)
 and when the DBFs were linked (at degree distance two)
 through a common partner. Graphically, Figure 1 diplays both
 forms of connections-direct ties and indirect linkages.

 For example, in Figure 1, Biogen has two ties (to Genentech
 and Lilly) and two connections (one direct, to Genentech,
 and one indirect, to Centocor through its tie with Lilly). The
 direct tie to Lilly is not counted as a connection for the
 purposes of the DBF network measures, since Lilly is not a
 DBF. As we argued earlier, each tie reflects underlying, on-
 going relationships, and thus a common connection through
 an outside partner means that the DBFs share a structurally
 equivalent position with that partner. For similar reasons, in
 measuring centrality we did not discriminate among
 connections involving different functions. The various types
 of collaborative activities each play a comparable role in
 creating a firm's overall set of relationships. Measures of
 central connectivity were computed using UCINET IV
 (Borgatti, Everett, and Freeman, 1992).

 Figure 1. Ties and connections between biotechnology firms.

 Lilly

 Observed Genentech
 Ties Centocor

 Biogen

 Genentech
 Centocor

 Projected l Biogenn
 Connections /t?
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 Membership in the main component at time t + 1: A
 component is generally defined as a maximally connected
 subgraph, or a set of points that are connected to one
 another by paths of any distance (Scott, 1991: 104). We
 defined a component as a group of n firms, each of which
 has a connection to at least one other firm in the group. In
 our components, connections are either direct or degree
 distance two, rather than paths of any length (for an even
 more stringent definition of components, see L. Freeman,
 1992). Components define disconnected subgroups. Such a
 measure captures the degree of fragmentation in an
 industry's network structure. In the biotech industry for each
 year of our sample, the field is characterized by a main
 component, to which the majority of firms with ties are
 connected. The remainder are fragmented into many very
 small components, typically composed of isolates. We
 created a dummy variable, MainComp, that takes the value
 of 1 if a firm is in the main connected component and 0 if
 not. A firm that is in the main component is considered
 much more centrally connected than an isolate.

 Degree centrality at time t + 1: Centrality is a measure of
 how well connected, or active, a firm is in the overall
 network. We gauged centrality of a firm locally rather than
 globally, in network parlance, such that a firm's centrality is
 the number of other firms connected to that firm, ignoring
 how well those partners are connected. Degree centrality is
 a common measure of the centralization of power in
 organizational studies of interlocking directorates, where
 researchers using this operationalization have often noted
 the centrality of banks in corporate networks (Mizruchi,
 1982; Useem, 1984; Mintz and Schwartz, 1985).

 Closeness centrality at time t + 1: We also used a measure
 of centrality based on the concept of closeness (L. Freeman,
 1979), which captures independence from the control of
 others. Closeness centrality was computed for each firm as
 the reciprocal of the sum of the degree distance to each
 other firm. In our context, a high closeness score means a
 firm has access to many other DBFs and, ergo, is not
 dependent on specific others for access to information.

 Growth at time t + 1. We indexed growth in two ways. We
 used the reported number of employees at time t + 1 as a
 measure of size. We also created a dummy variable, public,
 that takes on the value of 1 if the firm is publicly traded at
 time t + 1 and 0 otherwise.

 Independent variables. We based our predictions on prior
 measures of collaborative research activity and experience,
 non-R&D network experience, diversity of alliances, and
 network 'centrality. We used the number of R&D ties,
 network portfolio diversity, and central connectivity as
 defined above, but at time t. We also introduced measures
 of network experience, defined below.

 Collaborative R&D experience at time t was measured as the
 time since inception of a firm's first R&D alliance. This was
 computed for each firm in each year as the current date
 minus the date at which the firm's initial R&D tie was
 formalized. Non-R&D network experience at time t, an
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 additional measure of experience at managing ties, is the
 time since inception of a firm's first tie for any purpose other
 than R&D. This was computed for each firm at time t as the
 current date minus the date at which the firm's first
 nonresearch alliance was formalized.

 Control variables. In predicting diversity and centrality, we
 explicitly incorporated controls for the prior total number of
 ties. In addition, we controlled for the number of ties of each
 type (other than R&D), as well as centrality, in all of the
 predictions in which the number of R&D ties was used as an
 independent variable. We did so to demonstrate that R&D
 uniquely drives network behavior. Finally, we controlled for
 alternative explanations that involve firm age or size as
 predictors, rather than as outcomes, of network behavior.
 Age appears as a predictor in ecological and life-cycle
 theories of organization, while greater size, indicating a more
 extensive hierarchy, is seen as an alternative to alliances in
 the transaction-cost literature.

 As an alternative to direct experience, we used a firm's
 calendar age at time t to capture vicarious experience or
 advantages due to the establishment of internal routines as a
 control in all predictions of the effects of collaborative R&D
 experience or non-R&D network experience. Age was
 computed for each firm in each year as the date of founding
 subtracted from the current date. We used the number of
 employees to incorporate firm size at time t as a control in
 all predictions of network behavior and position. Total ties at
 time t is the aggregate number of ties of all types and
 serves as a control in our predictions involving central
 connectivity.

 Statistical Methods

 Our data consist of five years of cross-sectional records. In
 each cross section, the variables were measured at the firm
 level. To test the predictions of our learning perspective, we
 used a panel regression model. The selection of this
 technique involves two primary theoretical considerations
 and the need to address a number of statistical issues that
 stem from these concerns. The first theoretical consideration
 is that learning resides within firms and occurs over time.
 We argue that while learning occurs through network
 relationships, firms are both the actors and the recipients of
 the skills and expertise that learning brings. This presents
 two related statistical concerns: unobserved heterogeneity
 and autocorrelation.

 Unobserved heterogeneity arises due to differences among
 firms in omitted variables that are constant over time and
 may affect both independent and dependent variables (as a
 common cause). For example, larger firms may have more
 R&D ties and a more diverse portfolio because of past
 successes. To eliminate any spurious effects due to
 unobserved differences among firms, we included fixed firm
 effects by entering a dummy variable for each firm.
 Consequently, the estimated coefficients will be
 interpretable as the amount by which the within-firm
 deviation on the dependent variable shifts in response to a
 preceding change in the deviation of the independent
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 variable. This interpretation captures the dynamic and firm-
 centered nature of learning. Further, we essentially have the
 population of dedicated biotech firms over our observed time
 period, and not a random sample.

 We were interested in estimating a dynamic model, in which
 the independent variables are lagged one year. Firms may be
 "imprinted" or otherwise start on developmental trajectories
 before the start of our observation period. These trajectories
 may have naturally evolving patterns that change over time
 in coherent ways, but ones that we cannot foresee or
 measure. The omission of an important factor that changes
 over time within firms will result in autocorrelated errors and
 may bias estimates of the parameters in which we are most
 interested. One way of breaking the correlation over time, so
 as not to overestimate the effects of our hypothesized
 independent variables, is to include a lagged dependent

 variable, yit-1, as a predictor. For each of the models
 reported, we estimated the effect of a serial correlation term
 in a first-order autoregressive model, as described in Hsiao
 (1986: 54-55). After controlling for the lagged dependent
 variable, we found no significant residual autocorrelation (at
 the .10 level). When a lagged dependent variable appears as
 an explanatory variable, however, the fixed effects estimator
 of the parameter on the lagged dependent variable may not
 be consistent, because our dataset involves a large number
 of firms observed over a short period of time. To check the
 robustness of our reported results to this potential problem,
 we obtained estimates from three other specifications of the
 model. First, we omitted the lagged dependent variable and
 included a first-order serial correlation term. Second, we ran
 the model with the lagged dependent variable included, but
 using random effects to control for unobserved firm
 heterogeneity. Third, we used an instrumental variables
 estimator (for details, see Hsiao, 1986: ch. 2). The results
 we report below for our hypothesized predictor variables are
 systematically lower than the effects from the first two
 alternative models and about the same magnitude as those
 from the instrumental variables approach. Hence, the
 reported estimates are conservative. Most importantly, the
 pattern of significance is identical across all four
 specifications.

 The second theoretical consideration is that the dynamics of
 learning involve the co-evolution of firms and networks. This
 leads to an additional source of statistical nonindependence
 across our observations: For each firm we measure various
 properties of its position in the industry's network, but each
 firm's position can only be assessed in terms of the network
 positions of others. For instance, a particular firm might have
 a high centrality score, because a number of outside firms
 act as partners to multiple firms in the network. Hence, we
 need to control for effects that vary over time but are
 constant across firms, such as the overall number of outside
 partners, the density of the industry's network, government
 budgets for medical research, or the economic
 circumstances of pharmaceutical companies. To do so, we
 included fixed year effects: a dummy variable for each year.
 This gives each year its own mean on each of the measured
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 variables and should break the nonindependence in network
 measures.

 In using what is termed a fixed-effects specification (Judge,
 1985) for both the firm and year controls, with a lagged
 dependent variable as one of the predictors, the dependent

 variable, yit. is modeled as:
 J

 yit- ai + et + X(yi~t1) + E 1j(Xi't-1) + sit.
 j=1

 In this equation, a, is the effect of firm i: i = 1 ... N; Vt is
 the effect of year t: t = 1 . . .T; A is the within-firm
 slope for xj, pooled over all firms and years; and sit is a
 normally distributed error term.

 The strict assumptions of the normal regression model are
 violated, because our primary dependent variables are
 skewed and only approximately continuous. Concentration
 and closeness are defined as continuous, though bounded.
 The number of ties, centrality, and size can only take on non-
 negative integer values. Their ranges are quite large
 (approximately 70, 400, 120, and 3000, respectively),
 however, making the continuity approximation reasonable.
 While the truncation and skewness are potentially
 problematic, these features are shared by the independent
 variables, allowing us to make the a priori working
 assumption of symmetric disturbances. We confirmed the
 validity of this assumption with diagnostic plots in a post-hoc
 residual analysis (not reported here). Nonetheless, we
 checked the robustness of our results in several ways. First,
 we applied a square-root transformation to the dependent
 variables and reestimated the normal regression model.
 Second, for those dependent variables that are integer
 numbers, we also estimated panel models for count data.
 Third, there are two dependent variables that are constrained
 to the values of 0 and 1: MainComp and public. For these,
 we also ran panel models for binary outcomes (i.e., panel
 logit estimators). All three of the additional models confirmed
 the findings of the normal regressions. We report only the
 results of the normal regressions for all variables, to ease
 interpretation and allow comparison of effects across the
 models.

 The remaining issue in obtaining the fixed-effects estimates
 is that of colinearity among the predictor variables. We
 naturally expected some of our independent variables to be
 correlated within firms over time. We anticipated that as a
 firm ages, it would grow and gain experience. The result
 would be a strong correlation among age, size, and
 experience that could introduce bias or inefficiency into the
 estimation. In addition, we used a number of measures for
 some of our concepts, some of which were likely to be
 colinear. For instance, we used degree centrality, closeness
 centrality, and membership in the main component to
 operationalize the notion of central connectivity. The difficulty
 in operationalizing a concept such as central connectivity is
 obvious: The a priori restriction to just one measure would
 be unwise.

 Table 2 shows the within-firm correlations among our
 explanatory variables that might cause collinearity problems
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 Table 2

 Within-firm Correlations among Explanatory and Control Variables

 Variable 1 2 3 4 5 6 7 8 9 10

 1. R&D ties
 2. Total ties .5701
 3. Diversity .2291 .3821
 4. Collaborative .2702 .2390 .1835
 R&D experience
 5. Non-R&D .2394 .2831 .3212 .7824
 network experience

 6. Degree centrality .4744 .6817 .2762 .2649 .2574
 7. Closeness .3060 .4159 .3369 .5434 .5443 .3922
 8. MainComp .2323 .3450 .2256 .1637 .1337 .3065 .8762
 9. Age .2510 .3130 .3202 .7678 .8795 .2907 .6168 .2425
 10. Size .0838 .0380 .0867 .3401 .3407 .0160 .2578 .0165 .3242
 11. Public .2164 .3105 .3254 .3573 .3769 .2730 .3627 .2134 .4071 .0698

 in the statistical estimations. We find three interrelated sets
 of variables. First, the time-incremental variables-age,
 collaborative R&D experience, and non-R&D network
 experience-are, as expected, intercorrelated. The second
 group of correlated variables are the numbers of ties, total
 and R&D, along with degree centrality. The third group arises
 from the various measures we used to locate a firm within
 industry networks: Closeness centrality and MainComp are
 highly correlated.

 To deal with the problems of colinearity and
 operationalization, we embedded the panel regression
 estimator in a variable-selection procedure, programmed in
 MATLAB (The Mathworks, 1994). For each dependent
 variable, we began with a model consisting of all the
 hypothesized predictor and control variables for which there
 are no colinearity or operationalization problems. We then
 performed a series of estimations, each adding one of the
 theoretically justifiable combinations of interrelated
 hypothesized predictor or control variables contained in our
 hypotheses or important alternatives for that dependent
 variable. Within each of the three groups of interrelated
 variables, we began with each predictor variable on its own,
 then ran all combinations of two such predictors, and so on
 as needed until we arrived at a final combination consisting
 of all the interrelated predictor variables in that group for the
 dependent variable being explained. For each dependent
 variable, we analyzed the explanatory power of all such
 subsets and selected the subset providing the best model
 fit, adjusted for degrees of freedom. We then assessed the
 robustness of each selected subset using inclusion criteria of
 p < .05 for both the t-test of the coefficient for each term
 and the F-test for the improvement in model fit due to each
 term, compared with all nested models with one fewer
 predictors, and with exclusion criteria of p > .10 for both the
 t-test of the coefficient for each term and the F-test for the
 improvement in model fit due to each term, compared with
 all nested models with one greater predictor. This procedure
 for assessing fit ensures that the results are not ad-hoc: No
 variables are either included or excluded in the results due to
 small changes in attributed variance. We then repeated the
 steps just described across the selected subsets for all three
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 groups of interrelated variables, to obtain for each dependent
 variable a final set of predictor and control variables that is
 meaningful and robust.

 RESULTS

 We present firm demographics, by year, in Table 3. The
 results are broken down, within each year, for both firms
 with ties and those without. The table gives the number of
 DBFs in each category, along with means and standard
 deviations for age, size, public, and collaborative R&D
 experience and non-R&D network experience (in years).
 Firms with ties are slightly older, for most years, though the
 gap narrows over time and reverses in 1994. More
 interestingly, firms with ties are substantially larger
 (p < .0001 in all years), and the gap expands (though not
 significantly) over the years observed. This difference
 suggests that firms with ties are growing faster (in raw
 numbers) than those without ties. The means for the
 indicator variable public are the percentages (in decimals) of
 firms publicly traded. A much larger percentage of firms with
 ties are publicly traded (p < .0001), in all years, and the raw
 difference remains nearly constant.

 Table 3

 Firm Demographics by Year*

 1990 1991 1992 1993 1994
 Variable No ties Ties No ties Ties No ties Ties No ties Ties No ties Ties

 Age 5.70 7.99 6.91 8.41 7.07 8.78 8.65 9.38 12.47 9.93
 (5.81) (5.83) (7.15) (5.64) (6.73) (6.08) (7.17) (6.22) (6.39) (6.35)

 Size 46.33 141.41 38.63t 128.63 43.36 155.58 41.18 166.70 58.46 174.83
 (52.50) (278.27) (49.58) (233.79) (44.68) (331.59) (44.63) (356.08) (81.60) (392.50)

 Public .08 .48 .12 .49 .14 .59 .19 .62 .25 .68
 Collaborative R&D 0.15 1.82 0.03 2.34 0.28 2.63 0.29 3.16 1.18 3.70
 experience (1.07) (2.31) (0.10) (2.60) (1.73) (2.75) (1.13) (3.06) (2.29) (3.40)

 Non-R&D network .06 4.18 0.21 4.74 0.37 5.07 0.49 5.66 1.54 6.29
 experience (.42) (3.44) (0.91) (3.71) (1.43) (3.95) (1.59) (4.14) (2.87) (4.39)

 Total firms 63 179 56 184 44 190 37 192 31 195

 * Means presented first, standard deviations in parentheses below.
 t Mean and standard deviation trimmed of one outlier that had ties in all other years.

 The descriptive measures for collaborative R&D experience
 and non-R&D network experience point to a distinctive
 pattern of organizational development for firms that rely on
 network ties. While firms always have the option of
 eliminating their reliance on external collaborations, it turns
 out that firms that have ties for any length of time rarely do
 so. We estimate that roughly 1 5 percent of ties are
 terminated each year, but this does not necessarily end a
 relationship. An R&D alliance on a specific project may
 conclude, for example, and be replaced by a new research
 venture, a complex manufacturing and marketing agreement,
 or some other new arrangement. This finding is seen from
 the means for those firms with no ties, which are quite
 small. Firms with ties have significantly more competence
 and experience than firms without ties (p K .0001 ) in all
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 years. Over the five-year period, the number of firms without
 ties drops by exactly 50 percent, from 62 to 31. The number
 of firms with ties grows incrementally, both as a result of
 new entrants to the field and firms without ties embarking
 on collaborations.

 Table 4 summarizes the network activity of firms, by year.
 We present means and standard deviations for the number
 of ties (total and disaggregated by types), partners, portfolio
 diversity, and network measures of central connectivity. The
 number of ties and partners, on average, are growing only
 slightly (p = .33 and .19, respectively). At the same time,
 the measures of centrality (p = .0069 for degree centrality,
 p < .0001 for closeness) are expanding substantially.
 Membership in the main component (MainComp) is also
 steadily increasing (p = .065). This suggests that firms are
 not "promiscuous" in their use of ties; rather, they are
 deepening their connectedness without adding substantial
 numbers of new ties. On average, firms have ties of each
 variety, save for manufacturing and clinical ties. These
 findings have important implications for the strategy that is
 apparently pursued by biotechs. In contrast to product life-
 cycle or transaction-cost thinking, as firms grow older and
 larger they do not appear to reduce the number and type of
 collaborations in which they are engaged. Diversity is
 increasing over the period (p = .0027), although R&D (p =
 .10) and finance (p = .031) ties are the only categories
 showing any growth in numbers.

 Table 4

 Network Activity for Biotechnology Firms with Ties by Year*

 Variable 1990 1991 1992 1993 1994

 Ties 9.56 9.68 9.31 10.04 10.02
 (11.06) (10.15) (9.30) (9.73) (8.68)

 Degree centrality 18.41 20.03 18.85 22.25 24.50
 (23.76) (23.74) (21.52) (24.24) (24.00)

 Closeness 1.02 1.11 1.24 1.41 1.91
 (0.24) (0.27) (0.34) (0.38) (0.44)

 MainComp .86 .86 .85 .86 .91
 Partners 8.11 8.38 8.10 8.76 8.87

 (8.87) (8.30) (7.69) (8.04) (7.36)
 R&D 1.48 1.47 1.56 1.77 1.74

 (1.97) (1.96) (2.04) (2.25) (2.47)
 Finance 2.22 2.40 2.47 2.76 2.89

 (3.30) (3.26) (3.58) (4.03) (3.67)
 Clinical trials .05 .03 .02 .03 .03

 (0.24) (0.19) (0.14) (0.17) (0.25)
 Manufacturing .09 .09 .06 .07 .07

 (0.37) (0.41) (0.35) (0.36) (0.37)
 Marketing/licensing 2.19 2.34 2.25 2.39 2.40

 (3.84) (3.96) (3.69) (3.72) (3.49)
 Supply/distribution .66 .66 .67 .66 .57

 (1.47) (1.50) (1.59) (1.59) (1.50)
 Investment/joint venture 1.14 1.14 .96 .97 .95

 (2.52) (2.33) (2.06) (2.05) (1.97)
 Complex 1.64 1.49 1.27 1.36 1.34

 (3.13) (2.70) (2.43) (2.49) (2.23)
 Diversity .41 .44 .44 .48 .49

 (0.30) (0.29) (0.26) (0.25) (0.25)

 * Means presented first, standard deviations in parentheses below.
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 The results of our panel regressions are shown in Tables 5a,
 5b, and 5c. All reported effects for our hypothesized
 predictor variables are significant at or beyond the .05 level
 in both coefficient t-tests and model-improvement F-tests
 versus nested subset or superset models, as described in
 the methods section. Control effects reported are also all
 significant, except for the effects of number of ties in
 predictions involving centrality, which are included whether
 significant or not. Each column reports the results for a
 dependent variable measured at time t + 1. Each row
 contains the effects of an explanatory variable measured at
 time t. One set of panel regressions was performed for each
 dependent variable (columns) in which all possible subsets of
 theoretically justifiable explanatory variables (rows) were
 entered. Where effects are not reported, the row variable
 was not included in the best-fitting subset for lack of
 significance or explanatory power (p-values in excess of .10).
 All models included fixed firm and year effects (dummy
 variables) that, even when significant, are not reported to
 conserve space and enhance the readability of the tables.
 These results and details on the complete variable-selection
 process are available from the authors. For all of the
 prediction equations, age was included among the
 explanatory variables entered but was weaker in its effect
 than experience when entered alone and showed no
 improvement in fit when added to experience. Thus, age
 was eliminated. Similarly, the number of ties of all types
 other than R&D were also eliminated.

 Results in Tables 5a-5c provide support for most of our
 specific hypotheses and strong overall support for the

 Table 5a

 Determinants of Network Portfolios: Results of Panel Regressions*

 Dependent variables (at time t + 1)

 Predictor variables Clinical Marketing/ Supply/ Investment/ Total

 (at time t) R&D ties Finance trials Manufacturing licensing distribution joint venture Complex ties Diversity

 R&D ties .0963 .0069 .1625 .0249 .0997 .0589 .4662 .0133
 (.0443) (.0037) (.0317) (.0102) (.0221) (.0228) (.0025) (.0047)

 Non-R&D network .1148 .0799 .0186
 experience (.0309) (.0315) (.0087)

 Closeness centrality .2225
 (.1005)

 Control variablest
 Lagged dependent .4871 .2535 .3632 .2977 .3234 .3755 .3439 .4009 .4194 .1818
 variable (.0339) (.0339) (.0330) (.0301) (.0308) (.0284) (.0301) (.0311) (.0373) (.0351)
 Size .0198

 (.0045)
 Public .1829 .0561

 (.0933) (.0210)
 Total ties .0307

 (.1311)
 MainComp .1429 .5374

 (.0774) (.2516)

 R-squared .8424 .8471 .8197 .9172 .9505 .9404 .9235 .9387 .9348 .8214

 Total firm-years 904 904 650 904 904 904 904 904 904 699

 * Standard errors are in parentheses. All reported coefficients are significant at or beyond the .05 level, except the effect of total ties
 on R&D ties.

 t Age and the number of ties of each non-R&D type were included as control variables in all models but were eliminated due to
 nonsignificance. All models included fixed firm and year effects (dummy variables), in addition to the lagged dependent variable.
 These estimates are not reported to conserve space.
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 Table 5b

 Determinants of Network Centrality: Results of Panel Regressions*

 Dependent variables (at time t + 1)

 Predictor variables Degree Closeness

 (at time t) centrality centrality MainComp

 R&D ties 1.5073
 (.3539)

 Collaborative R&D .0578
 experience (.0191)

 Non-R&D network .8371 .0391
 experience (.0726) (.0188)

 Diversity 6.3366 .2202 .2509
 (2.4455) (.0746) (.0573)

 Control variablest
 Lagged dependent .2416 .2096 .0419
 variable (.0387) (.0532) (.0375)

 Total ties .3810 .0052 .0030
 (.1555) (.0036) (.0028)

 R-squared .8958 .7531 .6823

 Total firm-years 718 707 718

 * Standard errors are in parentheses. All reported coefficients are significant
 at or beyond the .05 level.

 t Age, size and the number of ties of each non-R&D type were included as
 control variables in all models but were eliminated due to nonsignificance.
 All models included fixed firm and year effects (dummy variables), in
 addition to the lagged dependent variable. These estimates are not
 reported to conserve space.

 Table 5c

 Determinants of Growth: Results of Panel Regressions*

 Dependent variables
 (at time t + 1)

 Predictor variables
 (at time t) Size Public

 Collaborative R&D .0353
 experience (.0098)

 Non-R&D network .0618 .0429
 experience (.0261) (.0183)

 Degree centrality .0108 .0018
 (.0024) (.0008)

 Control variablest
 Lagged dependent .9507 .3066
 variable (.0277) (.0323)
 Total ties .0076 .0031

 (.0099) (.0033)

 R-squared .9789 .8606

 Total firm-years 639 886

 * Standard errors are in parentheses. All reported coefficients are significant
 at or beyond the .05 level.

 t Age was included as a control variable in both models but was eliminated
 due to nonsignificance; similarly for size in the model predicting public. All
 models included fixed firm and year effects (dummy variables), in addition
 to the lagged dependent variable. These estimates are not reported to
 conserve space.
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 Networks of Learning

 learning perspective. Hypothesis 1 predicted positive effects
 of the number of R&D ties and network experience at time t
 on the number of ties of each other type at time t + 1 and,
 in turn, on the diversity of ties at time t + 1. The row
 labeled R&D in Table 5a shows the effects of R&D ties on
 finance, marketing, clinical, complex, investment, and supply
 ties to be positive and significant. Further, the effects of
 R&D on the diversity measure are as predicted. Results in
 the row labeled Non-R&D network experience support the
 hypothesized experience effect on a firm's portfolio diversity
 but provide only partial support for the prediction that
 experience would increase the number of ties in each non-
 R&D category (.1148, p < .0001; .0799, p = .0057 for
 marketing and supply ties, respectively). Interestingly, the
 amount of experience with non-R&D ties is critical to a firm's
 ability to manage a more diverse portfolio. Collaborative R&D
 experience adds no explanatory power once the number of
 R&D ties is known. Finally, all the other tie types at t do not
 predict R&D ties at t + 1, nor do they predict each other or
 diversity. Hence, as hypothesized, it is collaborative R&D and
 network experience that drive firms' portfolios.

 Hypothesis 2 predicted positive effects of the number of
 R&D alliances, portfolio diversity, and network experience at
 time t on how centrally connected a firm becomes at time
 t + 1. Central connectedness was measured variously by
 degree and closeness centrality and membership in the main
 component (MainComp). Results in Table 5b show
 significant positive effects of R&D ties on degree centrality,
 collaborative R&D experience on closeness centrality, non-
 R&D network experience on both degree and closeness
 centrality, and portfolio diversity on all three measures of
 central connectivity. Hence, all aspects of hypothesis 2
 receive support. The amount of network R&D activity, along
 with skill at managing R&D alliances and other forms of
 collaboration (and, perhaps, the reputational benefits they
 may bring), help determine how quickly and deeply a firm
 moves into the core of the industry's network.

 Hypothesis 3 predicted positive effects of the measures of
 central connectedness and network experience at time t on
 size and public at time t + 1. This prediction receives
 support, as shown in Table 5c. Degree centrality positively
 predicts increases in size and going public, though effects
 were not found for closeness centrality or MainComp. Size is
 also positively predicted by non-R&D network experience,
 while both measures of network experience predict going
 public. Our last prediction, in hypothesis 4, was that central
 connectivity at time t would enhance a firm's collaborative
 R&D activity at time t + 1. Returning to Table 5a, above, and
 looking at the first column, we see that this is where
 closeness centrality has its primary effect.

 The overall pattern of results is quite consistent with a
 learning argument. We stress two general findings. First, age
 has no effect, while size is an outcome, not a predictor of
 network behavior. Growth is a process that requires time.
 Unlike biotic species, however, organizational growth is not
 programmed from age. Rather, it is the initiation of
 collaboration that sets the growth clock in motion, with
 centrality as a further stimulus. Second, network position
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 (central connectedness) has reciprocal influences on R&D
 alliances, investment ties, and total collaboration. We have
 argued and shown that R&D ties, experience, and diversity
 produce central connectedness. But the process does not
 stop there. Central connectedness cycles back to intensify a
 firm's commitment to exploring through its network.

 Taken together, the effects shown in Tables 5a-5c can be
 summarized graphically by the learning model displayed in
 Figure 2, which we label cycles of learning. Firms can enter
 via R&D ties or by some other type of tie. Initial collaborative
 relationships trigger the development of experience at
 managing ties. R&D ties, directly and through increased
 experience, enable firms to access more diverse sources of
 collaboration. Both R&D and non-R&D ties provide
 experience at managing networks. The development of
 experience enables a firm to become more central, which in
 turn has two effects. First, regardless of the pathway,
 centrally located DBFs are connected into the main
 component of the industry, providing access to critical
 information and resource flows needed for internal growth.
 The second effect is a feedback process in which centrality
 leads to the initiation and continuance of R&D alliances, thus
 sustaining the dynamics of learning. R&D ties and other
 types of collaborations are the admission ticket, while
 diversity, experience, and centrality are the main drivers of a
 dynamic system in which disparate firms join together in
 efforts to keep pace in high-speed learning races.

 Figure 2. Cycles of learning in the biotechnology network.

 versity ~~R&D alliances Ntork experience

 DISCUSSION

 We find in our results ample support for the view that
 networks of collaboration provide entry to a field in which
 the relevant knowledge is widely distributed and not easily
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 Networks of Learning

 produced inside the boundaries of a firm or obtained through
 market transactions. We argue that biotech firms grow by
 being connected to benefit-rich networks. What, then, are
 the tangible consequences of these network ties? We
 cannot, of course, answer this question definitively. We have
 stressed that this is a young industry, with many of the
 founding firms not quite 20 years old. We lack data on firms
 that were founded and subsequently failed before 1990.
 Thus, patterns that have emerged over a five-year period,
 albeit a crucial one in the industry's emergence from infancy
 to adolescence, do not provide the full story. Nevertheless,
 we think our findings are important for several reasons. First,
 numerous analysts have commented on the industry's very
 low mortality rate in its early years (Barley and Freeman,
 1992; Burrill and Lee, 1993). Second, the rules of the
 industry have developed and become elaborated during
 precisely the period we are studying. The majority of the
 industry's initial 25 products were brought to market and
 met with considerable success during this period. Finally, we
 think there are interesting and suggestive points of
 commonality between our measures of network experience
 and centrality and various, albeit less precise rankings of
 success in the industry.

 Two illustrations, presented in Table 6, highlight a possible
 linkage between networks of learning and firm performance.
 We list sales in 1993 for the top-ten biotech products. Four
 firms are responsible for developing these medicines,
 although for six of the cases, a larger company is
 responsible for sales and marketing. (This division of labor
 points to the different roles biotechs play in generating new
 knowledge and pharmaceuticals take in commercializing this
 knowledge.) Using our network measures as rankings, we
 find three of these firms on the list of the most central
 DBFs, and all four are among those firms most steeped in
 experience.

 We also present a list, drawn from Ernst & Young, of
 biotech firms with a 1994 market value in excess of $500
 million (Lee and Burrill, 1994). All of these companies appear
 on either our experience or centrality rankings, and four of
 the eight rate highly on both measures. Moreover, three of
 these four firms-Biogen, Chiron, and Genentech-appear
 on all four lists: most products to market, greatest market
 valuation, highest centrality, and most extensive experience.

 We next look at how biotech firms compare with firms in
 other industries, as well as with universities and research
 laboratories. Again we assess how well our network
 measures relate to other measures of firm behavior and
 performance. Business Week publishes an annual R&D
 scorecard, examining the level of R&D investment by U.S.
 firms. In Table 7, we use this scorecard to list the top R&D
 spenders as a percentage of sales. The first six are all
 biotechs, and of this group, five of the companies appear on
 either our experience or centrality lists, and three companies
 (once again, Biogen, Chiron, and Genentech) appear on both
 lists.

 Significant investments in R&D can produce varied
 outcomes, ranging from a new generation of products to
 novel innovations. The bulk of biotech research is aimed at
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 Table 6

 DBF Centrality, Ten Highest Rated Firms, 1990-94 (means)*

 Firm name Degree Closeness
 Centocor 110.20 1.4791
 Biogen 101.40 1.4788
 Cambridge Biotech 93.80 1.4796
 Genentech 100.20 1.4786
 Chiron 82.40 1.4781
 Athena Neurosciences 78.00 1.4767
 Scios Nova 71.80 1.4767
 DNX 71.40 1.4773
 ALZA 69.0 1.4765
 Genetics Institute 80.5 1.1788

 DBF Collaborative Research Experience, Top Eleven Firms, 1990-94
 (means, in years)

 Firm name Collaborative R&D experience
 Collaborative Research, Inc. 12.33
 BioMeasure, Inc. 11.33
 Chiron 9.33
 Unigene Labs 8.33
 PanLabs 8.33
 Biogen 8.33
 Applied DNA 8.33
 Amgen 8.33
 Genzyme 7.33
 Genentech 7.33
 ALZA 7.33

 DBFs with Market Value in Excess of $500 Million, June 1994t

 Firm name Value
 Amgen $5,704
 Genentech 5,678

 ALZA 1,920

 Chiron 1,802

 Genetics Institute 1,093
 Biogen 928

 Genzyme 636
 Centocor 572

 Top Ten Biotechnology Drugs on the Market, 1993 Net Sales (in
 millions)1

 Product Firm name Marketer Sales
 Neupogen Amgen Amgen $719
 Epogen Amgen Amgen 587
 Intron A Biogen Schering-Plough 572
 Humulin Genentech Eli Lilly 560
 Procrit Amgen Ortho Biotech 500
 Engerix-B Genentech SmithKline Beecham 480
 Recombinax HB Chiron Merck 245
 Activase Genentech Genentech 236
 Protropin Genentech Genentech 217
 Roferon-A Genentech Roche 172

 Total sales, top $4,288/$7,700
 ten/industry

 * Listed in order of combined rank (degree and closeness)
 t Source: Lee and Burrill (1994: 14).

 1 Source: Lee and Burrill (1994: 16).

 developing medicines that are fundamentally new. This focus
 brings biotech into close contact with basic reseach in
 molecular biology and genetics. We draw on citation data to
 emphasize biotechnology's position in the research
 community. In Table 7, we present a ranking of the most
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 Data provided by the Institute for
 Scientific Information (Philadelphia, PA),
 as reported in Biotechnology, 10 (1992):
 1517.

 Networks of Learning

 Table 7

 Top Ten R&D Spenders (in relation to sales) in U.S. Industry, 1993*

 Firm R&D as % of sales
 340.9%

 Immunex 97.6%
 Genetics Institute 58.4%
 Chiron 58.1%
 Biogen 48.5%
 Genentech 36.0%
 Genzyme 35.3%
 Continuum 28.1%
 MacNeal-Schwendler 26.8%
 Encore Computer 25.3%
 Knowledgeware

 Top Ten Most Visible Scientific Institutions in Molecular Biology and
 Genetics, 1988-92t

 Number of Cites per
 Institution papers publication
 Salk Institute 403 41.6
 Cold Spring Harbor Labs 359 40.8
 Whitehead Institute 392 39.7
 Genentech 225 33.1
 Chiron 200 32.8
 Institute Chemie Biologique 261 31.8
 Fred Hutchinson Cancer Center 413 27.1
 MIT 1,060 25.8
 Princeton 369 24.0
 MRC lab Molecular Biology 430 23.7

 * Source: COMPUSTAT, reported in Business Week, June 27, 1994, p. 79.
 Biotechnology firms are shown in boldface type.

 t Source: Institute for Scientific Information, Science Watch, 4:7 (July/
 August, 1993). Reprinted with permission of ISI. Biotechnology firms are
 shown in boldface type.

 significant scientific institutions in molecular biology and
 genetics over the period 1988-1992, measured by number
 of citations per paper. Two of the most central and
 experienced biotech firms by our measures, Genentech and
 Chiron, rank fourth and fifth on this prestigious and diverse
 list-in the company of world-class research institutes, elite
 private universities, and a leading cancer center. In citation
 data collected over a longer period of time, from 1981 to
 1992, the average citations per paper for biotechs was 27.5,
 as compared with rates of 31.25 for independent and
 university labs and 10.8 for pharmaceutical companies.4 We
 mention these results for two reasons. First, they illustrate
 the closeness of the biotech and university communities.
 Second, the four highest cited biotechs (Genentech,
 Genetics Institute, Biogen, and Chiron, with scores of 39.55,
 37.54, 35.67, and 32.82, respectively) are, once more, highly
 rated on our experience and centrality measures.

 The data in Tables 6 and 7 combine with our statistical
 results to suggest that being centrally connected is
 necessary to achieve valued organizational outcomes.
 Nevertheless, the use of networks is not a guarantor of
 success. More work is needed before we fully understand
 the heterogeneous pathways firms take in our cycles-of-
 learning model and why some lead to visible indicators of
 success while others do not. In addition, we underscore in
 the foregoing that the relationship between our measures of
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 learning and the varied indicators of performance are merely
 suggestive. Nonetheless, we offer these signposts of
 organizational performance because they illustrate the critical
 stages in the process of developing biotechnology
 medicines. Highly visible publications attract scientific
 attention and serve as signals to investors and intellectual
 talent. Obtaining product approval for a new medicine and
 generating high-volume sales show that science-based
 companies can take ideas from the laboratory to successful
 commercialization. A market value in excess of $500 million
 is evidence of staying power, a robust sign that firms
 organized around networks of learning are capable of
 producing enviable results. On all these dimensions of
 production, our measures of learning are associated with
 those firms that have, thus far, been industry leaders.

 CONCLUSION

 We have argued that in a field of rapid technological
 development, such as biotechnology, the locus of innovation
 is found within the networks of interorganizational
 relationships that sustain a fluid and evolving community.
 Learning occurs within the context of membership in a
 community and may require different kinds of organizations
 and organizational practices to access that community. Our
 empirical analyses allow us to flesh out the picture of a firm
 under these conditions. Several standard organizational
 characteristics, such as age and size, appear to be ancillary
 in accounting for patterns of collaboration. Neither growth
 nor age reduced the propensity to engage in external
 relationships. Instead, age, per se, proved unimportant in the
 context of network experience, and size was an outcome
 rather than a determinant of partnerships.

 We found a path-dependent (Arthur, 1990) cycle of learning
 in which an early choice of exploration elicited positive
 feedback. In part, this feedback involved anticipated learning
 with the project at hand, but many of the gains stem from
 consequences that are harder for firms to foresee.
 Knowledge is garnered from collaboration on a specific
 project, but this participation has unanticipated results not
 apparent at the outset of the relationship. Science does not
 follow an orderly path; it has a nasty habit of spiraling off
 into multiple, uncharted directions. In our view, the
 development of absorptive capacity (Cohen and Levinthal,
 1989, 1990) and skill at managing collaborations, as well as
 the increased awareness of new projects and reputation as a
 valuable partner, are all serendipitous benefits of
 collaboration. Such advantages make it unlikely that firms
 will retreat from their overall use of alliances, although
 individual agreements may come and go. When the locus of
 innovation is found in an interorganizational network, access
 to that network proves critical. R&D alliances are the
 admission ticket, the foundation for more diverse types of
 collaborations, and the pivot around which firms become
 more centrally connected.

 Equally important are changes at the network and industry
 levels. In our sample, firms without ties are becoming
 increasingly rare; the modal firm has multiple partnerships.
 Perhaps our most interesting descriptive result is that the
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 Networks of Learning

 field is becoming more tightly connected not in spite of, but
 because of a marked increase in the number of partners
 involved in alliances with DBFs. Network density (based on
 connections) has increased 50 percent from .06 to .09, while
 the number of firms has dropped slightly (from 241 to 226).
 We take this increasing connectivity within an expanding
 universe as further evidence that two processes of learning
 are occurring simultaneously and recursively. First, firms are
 increasingly using ties to enhance the inflow of specific
 information, resources, and products. Second, firms are
 becoming much more adept at and reputed for the general
 practice of collaboration with diverse partners.

 As a result of this reciprocal learning, both firm-level and
 industry-level practices are evolving, with boundaries
 becoming ever more permeable. In contrast to the much-
 discussed liability of newness hypothesis (Stinchcombe,
 1965; Hannan and Freeman, 1989), there appears to be a
 liability of unconnectedness (Baum and Oliver, 1992) at work
 in biotechnology, and other fields in which intellectual
 developments are expanding rapidly. Rather than using
 external relations as a temporary mechanism to compensate
 for capabilities a firm has not yet mastered, firms use
 collaborations to expand all their competencies. Firms opt for
 sustaining the ability to learn, via interdependence, over
 independence by means of vertical integration. This, in turn,
 promotes a sense of community-level mutualism (Barnett,
 1990). Competition is no longer seen as a game with a zero-
 sum outcome (Thurow, 1980), but as a positive-sum
 relationship in which new mechanisms for providing
 resources develop in tandem with advances in knowledge.
 At the core of this relationship is a vital need to access
 relevant knowledge: knowledge of a sort that is
 sophisticated and widely dispersed and not easily produced
 or captured inside the boundaries of a firm. These conditions
 are not limited to biotechnology. In fields as diverse as
 ceramics and software, much of the relevant know-how is
 neither located inside an organization nor readily available for
 purchase. When the sources of knowledge are disparate and
 the pathways of technological development uncharted, we
 would expect the emergence of networks of learning.
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